I am trying to find the thermal state using a purification scheme for the following model
H{=}\sum_{j}^{N-1}{\bf S}_{j}.{\bf S}_{j{+}1}+ h \sum_{j}^{N} S^z_{j}
The following implementation gives the correct benchmark results only for two values of h=0, 1
gates = ITensor[]
for j=1:N-1
s1 = s[j]
s2 = s[j+1]
hj = op("Sz",s1) * op("Sz",s2) +
1/2 * op("S+",s1) * op("S-",s2) +
1/2 * op("S-",s1) * op("S+",s2) -
h * op("Sz",s1) * op("Id",s2)
Gj = exp(-1.0* tau/2 * hj)
push!(gates,Gj)
end
hj = - h * op("Id",s[N-1]) * op("Sz",s[N])
Gj = exp(-1.0 * tau/2 * hj)
push!(gates,Gj)
append!(gates,reverse(gates))
@miles Is the above implementation of trotter gates correct for the H ?. Could you please help me with this ?