findInds(TM, ββ) =
(100|id=137|Lup,Link)
1: 1 QN({βL8β,-6},{βSzβ,6})
2: 10 QN({βL8β,0},{βSzβ,4})
3: 1 QN({βL8β,6},{βSzβ,6})
4: 10 QN({βL8β,6},{βSzβ,2})
5: 2 QN({βL8β,12},{βSzβ,0})
6: 10 QN({βL8β,-6},{βSzβ,2})
7: 23 QN({βL8β,0},{βSzβ,0})
8: 12 QN({βL8β,6},{βSzβ,-2})
9: 1 QN({βL8β,12},{βSzβ,-4})
10: 1 QN({βL8β,-12},{βSzβ,0})
11: 11 QN({βL8β,-6},{βSzβ,-2})
12: 12 QN({βL8β,0},{βSzβ,-4})
13: 2 QN({βL8β,6},{βSzβ,-6})
14: 1 QN({βL8β,-12},{βSzβ,-4})
15: 2 QN({βL8β,-6},{βSzβ,-6})
16: 1 QN({βL8β,0},{βSzβ,-8})
(100|id=137|Ldn,Link)
1: 1 QN({βL8β,-6},{βSzβ,6})
2: 10 QN({βL8β,0},{βSzβ,4})
3: 1 QN({βL8β,6},{βSzβ,6})
4: 10 QN({βL8β,6},{βSzβ,2})
5: 2 QN({βL8β,12},{βSzβ,0})
6: 10 QN({βL8β,-6},{βSzβ,2})
7: 23 QN({βL8β,0},{βSzβ,0})
8: 12 QN({βL8β,6},{βSzβ,-2})
9: 1 QN({βL8β,12},{βSzβ,-4})
10: 1 QN({βL8β,-12},{βSzβ,0})
11: 11 QN({βL8β,-6},{βSzβ,-2})
12: 12 QN({βL8β,0},{βSzβ,-4})
13: 2 QN({βL8β,6},{βSzβ,-6})
14: 1 QN({βL8β,-12},{βSzβ,-4})
15: 2 QN({βL8β,-6},{βSzβ,-6})
16: 1 QN({βL8β,0},{βSzβ,-8})
(100|id=415|Lup,Link)β
1: 10 QN({βL8β,6},{βSzβ,2})
2: 1 QN({βL8β,12},{βSzβ,0})
3: 24 QN({βL8β,0},{βSzβ,0})
4: 12 QN({βL8β,6},{βSzβ,-2})
5: 1 QN({βL8β,12},{βSzβ,-4})
6: 11 QN({βL8β,-6},{βSzβ,-2})
7: 12 QN({βL8β,0},{βSzβ,-4})
8: 2 QN({βL8β,6},{βSzβ,-6})
9: 1 QN({βL8β,-12},{βSzβ,-4})
10: 2 QN({βL8β,-6},{βSzβ,-6})
11: 1 QN({βL8β,0},{βSzβ,-8})
12: 1 QN({βL8β,6},{βSzβ,6})
13: 10 QN({βL8β,0},{βSzβ,4})
14: 10 QN({βL8β,-6},{βSzβ,2})
15: 1 QN({βL8β,-12},{βSzβ,0})
16: 1 QN({βL8β,-6},{βSzβ,6})
(100|id=415|Ldn,Link)β
1: 10 QN({βL8β,6},{βSzβ,2})
2: 1 QN({βL8β,12},{βSzβ,0})
3: 24 QN({βL8β,0},{βSzβ,0})
4: 12 QN({βL8β,6},{βSzβ,-2})
5: 1 QN({βL8β,12},{βSzβ,-4})
6: 11 QN({βL8β,-6},{βSzβ,-2})
7: 12 QN({βL8β,0},{βSzβ,-4})
8: 2 QN({βL8β,6},{βSzβ,-6})
9: 1 QN({βL8β,-12},{βSzβ,-4})
10: 2 QN({βL8β,-6},{βSzβ,-6})
11: 1 QN({βL8β,0},{βSzβ,-8})
12: 1 QN({βL8β,6},{βSzβ,6})
13: 10 QN({βL8β,0},{βSzβ,4})
14: 10 QN({βL8β,-6},{βSzβ,2})
15: 1 QN({βL8β,-12},{βSzβ,0})
16: 1 QN({βL8β,-6},{βSzβ,6})
when I use eigen, it shows Segmentation fault.
When I use diagHermitian, it tells