I using idmrg to calculate the wave functions psi. But when I use Print(psi(n_1)), I found that for odd number of sweeps, in the result n\neq n_1, while for even number of sweep, it is right.

I using idmrg to calculate the wave functions psi. But when I use Print(psi(n_1)), I found that for odd number of sweeps, in the result n\neq n_1, while for even number of sweep, it is right.

```
psi(1) =
ITensor ord=3:
(dim=100|id=365|"l=9,Link") <Out>
1: 52 QN({"Q21",-1},{"Q31",0},{"Q41",0})
2: 48 QN({"Q21",1},{"Q31",1},{"Q41",1})
(dim=4|id=219|"n=9,Site,Su4Spin") <Out>
1: 1 QN({"Q21",-1},{"Q31",-1},{"Q41",-1})
2: 1 QN({"Q21",1},{"Q31",0},{"Q41",0})
3: 1 QN({"Q21",0},{"Q31",1},{"Q41",0})
4: 1 QN({"Q21",0},{"Q31",0},{"Q41",1})
(dim=1|id=554|"V,Link") <In>
1: 1 QN({"Q21",0},{"Q31",0},{"Q41",0})
{norm=1.00 (QDense Real)}
```

```
psi(1) =
ITensor ord=3:
(dim=100|id=879|"l=1,Link") <Out>
1: 2 QN({"Q21",-2},{"Q31",-1},{"Q41",-2})
2: 3 QN({"Q21",-2},{"Q31",-2},{"Q41",-1})
3: 12 QN({"Q21",0},{"Q31",0},{"Q41",-1})
4: 25 QN({"Q21",0},{"Q31",-1},{"Q41",0})
5: 1 QN({"Q21",2},{"Q31",1},{"Q41",0})
6: 4 QN({"Q21",2},{"Q31",0},{"Q41",1})
7: 1 QN({"Q21",-3},{"Q31",-1},{"Q41",-1})
8: 33 QN({"Q21",-1},{"Q31",0},{"Q41",0})
9: 18 QN({"Q21",1},{"Q31",1},{"Q41",1})
10: 1 QN({"Q21",3},{"Q31",2},{"Q41",2})
(dim=4|id=225|"n=1,Site,Su4Spin") <Out>
1: 1 QN({"Q21",-1},{"Q31",-1},{"Q41",-1})
2: 1 QN({"Q21",1},{"Q31",0},{"Q41",0})
3: 1 QN({"Q21",0},{"Q31",1},{"Q41",0})
4: 1 QN({"Q21",0},{"Q31",0},{"Q41",1})
(dim=1|id=469|"V,Link") <In>
1: 1 QN({"Q21",0},{"Q31",0},{"Q41",0})
{norm=1.00 (QDense Real)}
```

the two outputs correspond to the same idmgr code but for different input number of sweeps. And I found for odd number of sweeps psi(1) correpond to n=N/2+1, here N is the total number of sites.

Another question is that when I calculate the correlation function, for very long range, the correlation function increases and even diverges. Does this mean my idmrg result not converge?

These two issues does not occur simutaneously.